Question Number	Answer	Additional Guidance	Mark
1(a)(i)	Two from: 1. idea of size of cube ;	1 ACCEPT surface area / volume IGNORE mass	
	 same {species / eq} of carrot ; same {age / source / eq} of carrot ; 		(2)

Question Number	Answer	Additional Guidance	Mark
1(a)(ii)	 (oxygen is) electron acceptor / eq ; (also oxygen) binds with protons / H⁺ /hydrogens ; Idea of electrons from {electron transport chain / ETC} ; to form (metabolic) water ; 	3 ACCEPT from cytochromes	
			(3)

Question	Answer	Additional Guidance	Mark
Number			
1 (b)	1. aerobic respiration ;		
	2. ref. to decarboxylation ;		
	3. (when) pyruvate broken down / eq ;		
	4. (decarboxylation occurs) in Krebs cycle ;	4 ACCEPT link reaction	
	5. details of where in Krebs cycle e.g. removed from { C6 / C5 / eq} compound ;	5 ACCEPT C3 to C2 if refer to link reaction	
			(4)

Question Number	Answer	Additional Guidance	Mark
1(c)	 as temperature increases, percentage of CO₂ in bag {increases / eq}; 	1 ACCEPT rises IGNORE change unqualified	
	 (as temperature increase) {reactants /named / eq} {gain more kinetic energy / collide more often}; 		
	3. increased enzyme activity / more E-S complexes form / eq ;		
	 smaller increase between 5 and 10 because {more active sites occupied / some other factor is limiting / eq}; 	4 ACCEPT e.g. O ₂ concentration could be limiting, high CO ₂ levels inhibit enzymes	(3)

Question Number	Answer	Additional Guidance	Mark
1(d)	anaerobic respiration ;	ACCEPT fermentation but not lactic acid fermentation IGNORE: respiration unqualified	(1)

Question	Correct Answer	Mark
Number		
2 (a)	ATPase / ATP synthetase ;	
	-	(1)

Correct Answer	Mark
1. (H ⁺ ions) from reduced NAD / eq ;	
2. H^{+} ions pumped into inter membrane space / eq ;	
3. reference to energy needed (for pump) / eq ;	
4. reference to movement of electrons along ETC /eq;	max
5. (ETC on) inner membrane / cristae;	(3)
	 Correct Answer 1. (H⁺ ions) from reduced NAD / eq ; 2. H⁺ ions pumped into inter membrane space / eq ; 3. reference to energy needed (for pump) / eq ; 4. reference to movement of electrons along ETC /eq; 5. (ETC on) inner membrane / cristae;

Question Number	Correct Answer	Mark
2(c)	1. H^+ ions follow diffusion gradient / eq ;	
	 idea that this causes an energy change or makes energy available ; 	
	3. ATP is formed / eq ;	
	4. idea that this occurs on stalked particles ;	max
	5. ATP is energy source for (biological processes) / eq ;	(2)

Question	Answer	Additional guidance	Mark
3(a)	 Idea an enzyme converts a named substrate into named product e.g. enzyme 1 converts P to Q ; 	ACCEPT answers in context of respiration ACCEPT 1 - ref to an enzyme converting one named intermediate to the next e.g.{enzyme/ named enzyme} used to convert hexose to phosphorylated hexose	
	 idea that this product becomes the substrate of next step ; idea of specificity ; 	ACCEPT 3 - description of specificity e.g. active site of enzyme 1 only accepts substance P or in context of named respiratory intermediate	
	4. {controls / eq} the conversion / eq ;	ACCEPT 4 – regulates	
	5. speeds up the conversion / eq ;6. by reducing activation energy / eq ;	ACCEPT 5 - catalysis / enzyme acts as a catalyst	
	7. credit reference to control of whole process ;	ACCEPT 7 - end product inhibition or description	(4)

Question	Answer	Additional guidance	Mark
Number			
3(b)(i)			
	1. W = {NAD / NAD ⁺ / NAD _{ox} / eq} ;		
	Any two of the following:		
	 (due to) reduced NAD {releasing/eq} {electrons / eq}; 	ACCEPT 2 – being oxidized Releasing hydrogen (atoms), H ⁺ /protons ⁻	
	 Idea of electrons go to {carrier A / ETC / eq}; 	ACCEPT 3 – 1 st electron carrier/correctly named carrier	
	4. idea of H ⁺ moved into inter-membranal space ;		(3)

Question	Answer	Additional guidance	Mark
3(b)(ii)			
0(0)(1)	1. substance X is ATP ;		
	Any two of the following :		
	 due to H⁺ pass through {stalked particle / ATP synthase}; 	ACCEPT 2 –ATPase	
	3. (H ⁺ passes) down an electrochemical gradient ;	ACCEPT 3 - description of electrochemical gradient	
	4. (sufficient) energy is {released / eq} ;		
	5. to join ADP and {Pi / eq} ;	ACCEPT 5 – phosphorylation of ADP	
	6. reference to chemiosmosis ;		(3)

Question Number	Answer			Additional guidance	Mark	
5(0)	Movement of coloured Situation liquid					
		towards A	towards B	does not move		
	Screw clip is open			\boxtimes		
	Screw clip is closed	×				
	Potassium hydroxide is replaced with water and screw clip is closed			X		(3)

Question Number	Answer	Mark
4(a)	molecule R - ATP / adenosine triphosphate ;	(2)
	molecule S - ADP / adenosine diphosphate ;	

Question Number	Answer	Mark
4(b)(i)	1. carbon dioxide / CO ₂ ;	
	2. idea that the C has been removed from C_6 or C_5 ;	(2)

Question	Answer	Mark
	1 syste would stop / og :	
4(b) (ll)	 Cycle would stop / eq ; 4 carbon compound would accumulate / eq ; 6 carbon compound would {run short / not be synthesised} / 5 carbon compound would run short / eq ; 	
	4. idea that {molecule T / H} reduce ;	(3)

Question Number	Answer	Mark
4(c)	 idea of electrons being {passed along / eq} the electron transport chain ; 	
	idea of {losing / eq} energy ;	
	3. (used to) add a phosphate to ADP to make ATP / eq ;	
	4. reference to ATPase ;	
	5. idea of chemiosmosis ;	
	6. idea of oxygen as the final acceptor ;	(3)